Additional Questions

13. i) To show convergence is uniform in Question 2.

Let $a_{n} \in \mathbb{C}$ be a sequence of coefficients and set $A(x)=\sum_{1 \leq n \leq x} a_{n}$. Prove that

$$
\sum_{n=N+1}^{\infty} \frac{a_{n}}{n^{s}}=-\frac{A(N)}{N^{s}}+s \int_{N}^{\infty} \frac{A(t)}{t^{s+1}} d t
$$

ii) Assume there exists a constant $C>0$ such that $|A(x)|<C$ for all x. Let

$$
F(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}} \quad \text { and } \quad F_{N}(s)=\sum_{n=1}^{N} \frac{a_{n}}{n^{s}} .
$$

Show that

$$
\left|F(s)-F_{N}(s)\right| \leq C \frac{1}{N^{\sigma}}\left(1+\frac{|s|}{\sigma}\right)
$$

for all $N \geq 1$. Thus deduce that for any $\delta>0$ and $T>0$ the Dirichlet series for $F(s)$ converges uniformly in the semi-infinite rectangle

$$
\{s=\sigma+i t: \sigma \geq \delta,|t|<T\} .
$$

Aside This means that the Dirichlet series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{s}}
$$

of Question 3 is not only convergent but also holomorphic for $\operatorname{Re} s>0$ in which case (50) gives an analytic continuation of $\zeta(s)$ to $\operatorname{Re} s>0$.
14. Generalise Question 3, replacing -1 by any $\zeta \in \mathbb{C}$ satisfying $|\zeta|=1$ along with $\zeta \neq 1$.
i) Prove that

$$
\left|\sum_{n=1}^{N} \zeta^{n}\right| \leq \frac{2}{|1-\zeta|}
$$

for all $N \geq 1$.
ii) Deduce that

$$
\sum_{n=1}^{\infty} \frac{\zeta^{n}}{n^{s}}
$$

converges uniformly for all $\operatorname{Re} s \geq \delta$, for all $\delta>0$.
iii) Deduce that as long as $\theta \neq 2 \pi k$ for any $k \in \mathbb{Z}$, the Dirichlet Series

$$
\sum_{n=1}^{\infty} \frac{\sin n \theta}{n^{s}}
$$

converges for all $\operatorname{Re} s>0$.
15. Generalise Question 11 and show that

$$
|\zeta(\sigma+i t)| \leq \frac{t^{1-\sigma}}{1-\sigma}+2 t^{1-\sigma}+1
$$

for $t \geq 4$ and $1 / 2 \leq \sigma<1$.
16. For $t>4$ prove that

$$
\left|\zeta^{\prime}(1 / 2+i t)\right| \leq 4 t^{1 / 2} \log t+4 t^{1 / 2}+2 \log t+25 / 8
$$

Hint Either differentiate (29) and (30) or use (32). Then estimate each term. You may estimate some terms differently to how I do in the solution so you may end with different coefficients, though you should be able to get the coefficient of the leading term, $t^{1 / 2} \log t$, to be 4 as shown.

